Amazon cover image
Image from Amazon.com

Millimeter-Wave Integrated Circuits [electronic resource] / by Eoin Carey, Sverre Lidholm.

By: Contributor(s): Material type: TextTextPublisher: Boston, MA : Springer US, 2005Description: XVI, 272 p. 134 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387236667
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 620 23
LOC classification:
  • TA1-2040
Online resources:
Contents:
An Introduction to mm-Wave Integrated Circuits -- High Frequency Materials and Technology -- High Frequency Devices -- High-Volume mm-Wave Circuits -- Low Noise mm-Wave Amplifiers -- Monolithic Mixers -- Fet Frequency Multipliers -- Practical Monolithic Transceiver -- General Discussion and Future Trends.
In: Springer eBooksSummary: With the ever-increasing demand on wireless spectrum by wide bandwidth applications, such as third-generation mobile phones at RF frequencies, Multipoint Video Distribution System (MVDS) and Local Multipoint Distribution System (LMDS) in the millimeter-wave frequency range, there is a growing need to exploit higher and higher frequencies. The mm-wave field has therefore become a rapidly emerging area of research. Millimeter-Wave Integrated Circuits explores the design and implementation of mm-wave integrated circuits using MMIC (Monolithic Microwave Integrated Circuit) technology. The main focal points are, firstly, fundamental circuit analyzes of building blocks necessary for the employment of MMIC technology for mm-wavelength applications, and, secondly, circuit design methodologies associated with these building blocks. The analytical/theoretical treatment is supplemented by specific mm-wave MMIC designs of varied complexity. The circuit designs presented have been fabricated on a commercial 0.25 m m GaAs pHEMT foundry process, thereby demonstrating that high volume, high quality mm-wave MMICs can indeed become a commercial reality. Millimeter-Wave Integrated Circuits has a broad scope, and includes detailed discussions on high frequency materials and technologies, high frequency devices and the design of high frequency circuits, giving the reader a good theoretical and practical understanding of mm-wave circuit design. Key components of mm-waves transceiver circuits are studied and evaluated. Practical MMIC realizations, targeted for transceiver applications operating near 40 GHz and 57 GHz, have been fabricated and tested. They include low noise amplifiers (LNAs), balanced diode mixer for both up and down-conversion, balanced HEMT mixer as down-converter, HEMT frequency doubler, HEMT frequency tripler and a 57 GHz transceiver using integrated building blocks. Furthermore the viability of state of the art mm-wave processes for the generation of high power levels at 100 GHz is analyzed and a design topology suitable for a practical realization is presented. Millimeter-Wave Integrated Circuits is written to support and supplement university mm-wave and high-frequency IC design courses, as well as serving as a reference for researchers and professional high frequency design engineers working in this exciting field of mm-wave integrated circuits.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Central Library Available E-37450

An Introduction to mm-Wave Integrated Circuits -- High Frequency Materials and Technology -- High Frequency Devices -- High-Volume mm-Wave Circuits -- Low Noise mm-Wave Amplifiers -- Monolithic Mixers -- Fet Frequency Multipliers -- Practical Monolithic Transceiver -- General Discussion and Future Trends.

With the ever-increasing demand on wireless spectrum by wide bandwidth applications, such as third-generation mobile phones at RF frequencies, Multipoint Video Distribution System (MVDS) and Local Multipoint Distribution System (LMDS) in the millimeter-wave frequency range, there is a growing need to exploit higher and higher frequencies. The mm-wave field has therefore become a rapidly emerging area of research. Millimeter-Wave Integrated Circuits explores the design and implementation of mm-wave integrated circuits using MMIC (Monolithic Microwave Integrated Circuit) technology. The main focal points are, firstly, fundamental circuit analyzes of building blocks necessary for the employment of MMIC technology for mm-wavelength applications, and, secondly, circuit design methodologies associated with these building blocks. The analytical/theoretical treatment is supplemented by specific mm-wave MMIC designs of varied complexity. The circuit designs presented have been fabricated on a commercial 0.25 m m GaAs pHEMT foundry process, thereby demonstrating that high volume, high quality mm-wave MMICs can indeed become a commercial reality. Millimeter-Wave Integrated Circuits has a broad scope, and includes detailed discussions on high frequency materials and technologies, high frequency devices and the design of high frequency circuits, giving the reader a good theoretical and practical understanding of mm-wave circuit design. Key components of mm-waves transceiver circuits are studied and evaluated. Practical MMIC realizations, targeted for transceiver applications operating near 40 GHz and 57 GHz, have been fabricated and tested. They include low noise amplifiers (LNAs), balanced diode mixer for both up and down-conversion, balanced HEMT mixer as down-converter, HEMT frequency doubler, HEMT frequency tripler and a 57 GHz transceiver using integrated building blocks. Furthermore the viability of state of the art mm-wave processes for the generation of high power levels at 100 GHz is analyzed and a design topology suitable for a practical realization is presented. Millimeter-Wave Integrated Circuits is written to support and supplement university mm-wave and high-frequency IC design courses, as well as serving as a reference for researchers and professional high frequency design engineers working in this exciting field of mm-wave integrated circuits.

There are no comments on this title.

to post a comment.

Maintained by VTU Library