Amazon cover image
Image from Amazon.com

Bias Temperature Instability for Devices and Circuits [electronic resource] / edited by Tibor Grasser.

By: Contributor(s): Material type: TextTextPublisher: New York, NY : Springer New York : Imprint: Springer, 2014Description: XI, 810 p. 601 illus., 318 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781461479093
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.3815 23
LOC classification:
  • TK7888.4
Online resources:
Contents:
Introduction -- Characterization, Experimental Challenges -- Advanced Characterization -- Characterization of Nanoscale Devices -- Statistical Properties/Variability -- Theoretical Understanding -- Possible Defects: Experimental -- Possible Defects: First Principles -- Modeling -- Technological Impact -- Silicon dioxides/SiON -- High-k oxides -- Alternative technologies -- Circuits.
In: Springer eBooksSummary: This book provides a single-source reference to one of the more challenging reliability issues plaguing modern semiconductor technologies, negative bias temperature instability.  Readers will benefit from state-of-the art coverage of research in topics such as time dependent defect spectroscopy, anomalous defect behavior, stochastic modeling with additional metastable states, multiphonon theory, compact modeling with RC ladders and implications on device reliability and lifetime.  ·         Enables readers to understand and model negative bias temperature instability, with an emphasis on dynamics; ·         Includes coverage of DC vs. AC stress, duty factor dependence and bias dependence; ·         Explains time dependent defect spectroscopy, as a measurement method that operates on nanoscale MOSFETs; ·         Introduces new defect model for metastable defect states, nonradiative multiphonon theory and stochastic behavior.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Central Library Available E-40126

Introduction -- Characterization, Experimental Challenges -- Advanced Characterization -- Characterization of Nanoscale Devices -- Statistical Properties/Variability -- Theoretical Understanding -- Possible Defects: Experimental -- Possible Defects: First Principles -- Modeling -- Technological Impact -- Silicon dioxides/SiON -- High-k oxides -- Alternative technologies -- Circuits.

This book provides a single-source reference to one of the more challenging reliability issues plaguing modern semiconductor technologies, negative bias temperature instability.  Readers will benefit from state-of-the art coverage of research in topics such as time dependent defect spectroscopy, anomalous defect behavior, stochastic modeling with additional metastable states, multiphonon theory, compact modeling with RC ladders and implications on device reliability and lifetime.  ·         Enables readers to understand and model negative bias temperature instability, with an emphasis on dynamics; ·         Includes coverage of DC vs. AC stress, duty factor dependence and bias dependence; ·         Explains time dependent defect spectroscopy, as a measurement method that operates on nanoscale MOSFETs; ·         Introduces new defect model for metastable defect states, nonradiative multiphonon theory and stochastic behavior.

There are no comments on this title.

to post a comment.

Maintained by VTU Library