Amazon cover image
Image from Amazon.com

Fundamentals of Computerized Tomography [electronic resource] : Image Reconstruction from Projections / by Gabor T. Herman.

By: Contributor(s): Material type: TextTextSeries: Advances in Pattern RecognitionPublisher: London : Springer London, 2009Edition: 2Description: XII, 300 p. 98 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781846287237
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.6 23
  • 006.37 23
LOC classification:
  • TA1637-1638
  • TA1637-1638
Online resources:
Contents:
An Overview of the Process of CT -- Physical Problems Associated with Data Collection in CT -- Computer Simulation of Data Collection in CT -- Data Collection and Reconstruction of the Head Phantom -- Basic Concepts of Reconstruction Algorithms -- Backprojection -- Filtered Backprojection for Parallel Beams -- Other Transform Methods for Parallel Beams -- Filtered Backprojection for Divergent Beams -- Algebraic Reconstruction Techniques -- Quadratic Optimization Methods -- Truly Three-Dimensional Reconstruction -- Three-Dimesional Display of Organs -- Mathematical Background.
In: Springer eBooksSummary: Computerized tomography, the process of obtaining the density distribution within a human body from multiple x-ray projections, has revolutionized diagnostic radiology over the past three decades. Fundamentally the same computational process has been used for reconstruction from projections in many other fields of science, engineering and medicine; for example, for the reconstruction of biological macromolecules from electron micrographs. This thoroughly revised and fully updated text/reference presents the computational and mathematical procedures underlying data collection, image reconstruction, and image display in computerized tomography. Focused on the needs of the practitioner, with emphasis on reconstruction methods, the book carefully discusses points of implementation and application. Following the successful formula of the widely cited first edition, the book investigates the field of computerized tomography in detail, summarizing the diverse applications of the technique. Further chapters concentrate on reconstruction algorithms, followed by a treatment of the 3D display of the results and a final chapter with proofs of the fundamental mathematical theorems. Some entirely new topics are introduced; these include the fast calculation of a ray sum for a digitized picture, the task-oriented comparison of reconstruction algorithm performance, blob basis functions and the linogram method for image reconstruction. Topics and features: *Describes how projection data are obtained and the resulting reconstructions are used in science and medicine, focusing on x-ray data but also covering other fields such as electron microscopy, nuclear medicine, ultrasound, materials science and nondestructive testing *Presents a comparative evaluation of reconstruction methods, their accuracy under ideal and realistic circumstances, computational costs, task-oriented performance, and general applicability *Provides a useful general syllabus for introductory courses *Investigates reconstruction algorithms, including filtered backprojection, Fourier and linogram reconstruction methods, algebraic reconstruction techniques, and quadratic optimization *Explores basis functions, functions to be optimized, norms, generalized inverses, least squares solutions, and maximum entropy solutions, as well as most likely estimates *Discusses the design and application of a large programming system (SNARK09) for image reconstruction, as well as computerized methods for 3D surface detection and display *Concludes each chapter with helpful Notes and References sections This easy-to-read text/reference is an excellent guide for practitioners from a range of disciplines across science, engineering, and medicine. Based on three decades of the author’s teaching, it can also serve as a textbook for an introductory graduate course on image reconstruction.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Central Library Available E-40494

An Overview of the Process of CT -- Physical Problems Associated with Data Collection in CT -- Computer Simulation of Data Collection in CT -- Data Collection and Reconstruction of the Head Phantom -- Basic Concepts of Reconstruction Algorithms -- Backprojection -- Filtered Backprojection for Parallel Beams -- Other Transform Methods for Parallel Beams -- Filtered Backprojection for Divergent Beams -- Algebraic Reconstruction Techniques -- Quadratic Optimization Methods -- Truly Three-Dimensional Reconstruction -- Three-Dimesional Display of Organs -- Mathematical Background.

Computerized tomography, the process of obtaining the density distribution within a human body from multiple x-ray projections, has revolutionized diagnostic radiology over the past three decades. Fundamentally the same computational process has been used for reconstruction from projections in many other fields of science, engineering and medicine; for example, for the reconstruction of biological macromolecules from electron micrographs. This thoroughly revised and fully updated text/reference presents the computational and mathematical procedures underlying data collection, image reconstruction, and image display in computerized tomography. Focused on the needs of the practitioner, with emphasis on reconstruction methods, the book carefully discusses points of implementation and application. Following the successful formula of the widely cited first edition, the book investigates the field of computerized tomography in detail, summarizing the diverse applications of the technique. Further chapters concentrate on reconstruction algorithms, followed by a treatment of the 3D display of the results and a final chapter with proofs of the fundamental mathematical theorems. Some entirely new topics are introduced; these include the fast calculation of a ray sum for a digitized picture, the task-oriented comparison of reconstruction algorithm performance, blob basis functions and the linogram method for image reconstruction. Topics and features: *Describes how projection data are obtained and the resulting reconstructions are used in science and medicine, focusing on x-ray data but also covering other fields such as electron microscopy, nuclear medicine, ultrasound, materials science and nondestructive testing *Presents a comparative evaluation of reconstruction methods, their accuracy under ideal and realistic circumstances, computational costs, task-oriented performance, and general applicability *Provides a useful general syllabus for introductory courses *Investigates reconstruction algorithms, including filtered backprojection, Fourier and linogram reconstruction methods, algebraic reconstruction techniques, and quadratic optimization *Explores basis functions, functions to be optimized, norms, generalized inverses, least squares solutions, and maximum entropy solutions, as well as most likely estimates *Discusses the design and application of a large programming system (SNARK09) for image reconstruction, as well as computerized methods for 3D surface detection and display *Concludes each chapter with helpful Notes and References sections This easy-to-read text/reference is an excellent guide for practitioners from a range of disciplines across science, engineering, and medicine. Based on three decades of the author’s teaching, it can also serve as a textbook for an introductory graduate course on image reconstruction.

There are no comments on this title.

to post a comment.

Maintained by VTU Library