Amazon cover image
Image from Amazon.com

Exact Exponential Algorithms [electronic resource] / by Fedor V. Fomin, Dieter Kratsch.

By: Contributor(s): Material type: TextTextSeries: Texts in Theoretical Computer Science. An EATCS SeriesPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Description: XIV, 206 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642165337
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 005.1 23
LOC classification:
  • QA76.9.A43
Online resources:
Contents:
Branching -- Dynamic Programming -- Inclusion-Exclusion -- Treewidth -- Measure & Conquer -- Subset Convolution -- Local Search and SAT -- Split and List -- Time Versus Space -- Miscellaneous -- Conclusions, Open Problems and Further Directions.
In: Springer eBooksSummary: Today most computer scientists believe that NP-hard problems cannot be solved by polynomial-time algorithms. From the polynomial-time perspective, all NP-complete problems are equivalent but their exponential-time properties vary widely. Why do some NP-hard problems appear to be easier than others? Are there algorithmic techniques for solving hard problems that are significantly faster than the exhaustive, brute-force methods? The algorithms that address these questions are known as exact exponential algorithms. The history of exact exponential algorithms for NP-hard problems dates back to the 1960s. The two classical examples are Bellman, Held and Karp’s dynamic programming algorithm for the traveling salesman problem and Ryser’s inclusion–exclusion formula for the permanent of a matrix. The design and analysis of exact algorithms leads to a better understanding of hard problems and initiates interesting new combinatorial and algorithmic challenges. The last decade has witnessed a rapid development of the area, with many new algorithmic techniques discovered. This has transformed  exact algorithms into a very active research field. This book provides an introduction to the area and explains the most common algorithmic techniques, and the text is supported throughout with exercises and detailed notes for further reading. The book is intended for advanced students and researchers in computer science, operations research, optimization and combinatorics.  
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Central Library Available E-47364

Branching -- Dynamic Programming -- Inclusion-Exclusion -- Treewidth -- Measure & Conquer -- Subset Convolution -- Local Search and SAT -- Split and List -- Time Versus Space -- Miscellaneous -- Conclusions, Open Problems and Further Directions.

Today most computer scientists believe that NP-hard problems cannot be solved by polynomial-time algorithms. From the polynomial-time perspective, all NP-complete problems are equivalent but their exponential-time properties vary widely. Why do some NP-hard problems appear to be easier than others? Are there algorithmic techniques for solving hard problems that are significantly faster than the exhaustive, brute-force methods? The algorithms that address these questions are known as exact exponential algorithms. The history of exact exponential algorithms for NP-hard problems dates back to the 1960s. The two classical examples are Bellman, Held and Karp’s dynamic programming algorithm for the traveling salesman problem and Ryser’s inclusion–exclusion formula for the permanent of a matrix. The design and analysis of exact algorithms leads to a better understanding of hard problems and initiates interesting new combinatorial and algorithmic challenges. The last decade has witnessed a rapid development of the area, with many new algorithmic techniques discovered. This has transformed  exact algorithms into a very active research field. This book provides an introduction to the area and explains the most common algorithmic techniques, and the text is supported throughout with exercises and detailed notes for further reading. The book is intended for advanced students and researchers in computer science, operations research, optimization and combinatorics.  

There are no comments on this title.

to post a comment.

Maintained by VTU Library