Amazon cover image
Image from Amazon.com

Forward Error Correction Based On Algebraic-Geometric Theory [electronic resource] / by Jafar A. Alzubi, Omar A. Alzubi, Thomas M. Chen.

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in Electrical and Computer EngineeringPublisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XII, 70 p. 33 illus., 20 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319082936
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.382 23
LOC classification:
  • TK1-9971
Online resources:
Contents:
1 Introduction -- 2 Theoretical Background -- 3 Literature Review -- 4 Algebraic-Geometric Non-Binary Block Turbo Codes -- 5 Irregular Decoding of Algebraic-Geometric Block Turbo Codes -- 6 Conclusions.
In: Springer eBooksSummary: This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Central Library Available E-41889

1 Introduction -- 2 Theoretical Background -- 3 Literature Review -- 4 Algebraic-Geometric Non-Binary Block Turbo Codes -- 5 Irregular Decoding of Algebraic-Geometric Block Turbo Codes -- 6 Conclusions.

This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

There are no comments on this title.

to post a comment.

Maintained by VTU Library