Amazon cover image
Image from Amazon.com

Bio-Inspired Self-Organizing Robotic Systems [electronic resource] / edited by Yan Meng, Yaochu Jin.

By: Contributor(s): Material type: TextTextSeries: Studies in Computational Intelligence ; 355Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Description: X, 275 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642207600
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q342
Online resources:
Contents:
Part I:  Self-Organizing Swarm Robotic Systems   --   Part II: Self-Reconfigurable Modular Robots   --   Part III: Autonomous Mental Development in Robotic Systems   --   Part IV:  Special Applications   Part III: Autonomous Mental Development in Robotic Systems   --   Part IV:  Special Applications.
In: Springer eBooksSummary: Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments.  Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. “Bio-inspired Self-organizing Robotic Systems” provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.  
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Central Library Available E-47866

Part I:  Self-Organizing Swarm Robotic Systems   --   Part II: Self-Reconfigurable Modular Robots   --   Part III: Autonomous Mental Development in Robotic Systems   --   Part IV:  Special Applications   Part III: Autonomous Mental Development in Robotic Systems   --   Part IV:  Special Applications.

Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments.  Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. “Bio-inspired Self-organizing Robotic Systems” provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.  

There are no comments on this title.

to post a comment.

Maintained by VTU Library