Amazon cover image
Image from Amazon.com

Photonic Microsystems [electronic resource] : Micro and Nanotechnology Applied to Optical Devices and Systems / by Olav Solgaard.

By: Contributor(s): Material type: TextTextSeries: MEMS Reference ShelfPublisher: Boston, MA : Springer US, 2009Description: online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387683515
Subject(s): Additional physical formats: Printed edition:: No titleOnline resources:
Contents:
to Optical Microsystems -- Electromagnetic Fields and Energy -- Plane Waves at Interfaces -- Diffraction and Gaussian Beams -- Optical Fibers and Waveguides -- Fiber and Waveguide Devices -- Optical MEMS Scanners -- Optical MEMS Fiber Switches -- Micromirror Arrays – Amplitude and Phase -- Grating Light Modulators -- Grating Light Modulators for Fiber Optics -- Optical Displacement Sensors -- Micro-Optical Filters -- Photonic Crystal Fundamentals -- Photonic Crystal Devices and Systems.
In: Springer eBooksSummary: Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems describes MEMS technology and demonstrates how MEMS allow miniaturization, parallel fabrication, and efficient packaging of optics, as well as integration of optics and electronics. Photonic Microsystems also describes the phenomenon of Photonic crystals (nanophotonics) and demonstrates their ability to enable synthesis of materials with optimized optical characteristics. This provides control over optical fields over sub-wavelength distances, leading to devices with improved scaling and functionality compared to traditional optics. Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems concludes with an up-to-date discussion of the need for the combination of MEMS and Photonic crystals by demonstrating that practical photonic-crystal devices leverage MEMS technology for integration and packaging. Drawing upon years of practical experience and using numerous examples and illustrative applications Olav Solgaard discusses: How Practical photonic-crystal devices leverage MEMS technology for integration and packaging The role of miniaturization in the integration and packaging of photonic microsystems The fundamental limits on scaling of optical devices and systems The analytical descriptions of Photonic Crystals and the practical application of Photonic-Crystal technology Teaches the fundamentals of optics and makes micro and nano photonics accessible to non experts About The MEMs Reference Shelf: "The MEMs Reference Shelf is a series devoted to Micro-Electro-Mechanical Systems (MEMs) which combine mechanical, electrical, optical, or fluidic elements on a common microfabricated substrate to create sensors, actuators, and microsystems. The series, authored by leading MEMs practitioners, strives to provide a framework where basic principles, known methodologies and new applications are integrated in a coherent and consistent manner." STEPHEN D. SENTURIA Massachusetts Institute of Technology, Professor of Electrical Engineering, Emeritus
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Book E-Book Central Library Available E-37850

to Optical Microsystems -- Electromagnetic Fields and Energy -- Plane Waves at Interfaces -- Diffraction and Gaussian Beams -- Optical Fibers and Waveguides -- Fiber and Waveguide Devices -- Optical MEMS Scanners -- Optical MEMS Fiber Switches -- Micromirror Arrays – Amplitude and Phase -- Grating Light Modulators -- Grating Light Modulators for Fiber Optics -- Optical Displacement Sensors -- Micro-Optical Filters -- Photonic Crystal Fundamentals -- Photonic Crystal Devices and Systems.

Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems describes MEMS technology and demonstrates how MEMS allow miniaturization, parallel fabrication, and efficient packaging of optics, as well as integration of optics and electronics. Photonic Microsystems also describes the phenomenon of Photonic crystals (nanophotonics) and demonstrates their ability to enable synthesis of materials with optimized optical characteristics. This provides control over optical fields over sub-wavelength distances, leading to devices with improved scaling and functionality compared to traditional optics. Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems concludes with an up-to-date discussion of the need for the combination of MEMS and Photonic crystals by demonstrating that practical photonic-crystal devices leverage MEMS technology for integration and packaging. Drawing upon years of practical experience and using numerous examples and illustrative applications Olav Solgaard discusses: How Practical photonic-crystal devices leverage MEMS technology for integration and packaging The role of miniaturization in the integration and packaging of photonic microsystems The fundamental limits on scaling of optical devices and systems The analytical descriptions of Photonic Crystals and the practical application of Photonic-Crystal technology Teaches the fundamentals of optics and makes micro and nano photonics accessible to non experts About The MEMs Reference Shelf: "The MEMs Reference Shelf is a series devoted to Micro-Electro-Mechanical Systems (MEMs) which combine mechanical, electrical, optical, or fluidic elements on a common microfabricated substrate to create sensors, actuators, and microsystems. The series, authored by leading MEMs practitioners, strives to provide a framework where basic principles, known methodologies and new applications are integrated in a coherent and consistent manner." STEPHEN D. SENTURIA Massachusetts Institute of Technology, Professor of Electrical Engineering, Emeritus

There are no comments on this title.

to post a comment.

Maintained by VTU Library